Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Nat Commun ; 14(1): 4851, 2023 08 10.
Article En | MEDLINE | ID: mdl-37563123

Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.


Corynebacterium glutamicum , Ketoglutarate Dehydrogenase Complex , Ketoglutarate Dehydrogenase Complex/metabolism , Cryoelectron Microscopy , Phosphorylation , Corynebacterium glutamicum/metabolism
2.
Microbiol Spectr ; 11(4): e0148123, 2023 08 17.
Article En | MEDLINE | ID: mdl-37432124

Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic bacterial pathogen strongly associated with colorectal cancer. Here, through comparative genomics analysis, we demonstrated that the genetic locus encoding the type VIIb secretion system (T7SSb) machinery is uniquely present in SGG in two different arrangements. SGG UCN34 carrying the most prevalent T7SSb genetic arrangement was chosen as the reference strain. To identify the effectors secreted by this secretion system, we inactivated the essC gene encoding the motor of this machinery. A comparison of the proteins secreted by UCN34 wild type and its isogenic ΔessC mutant revealed six T7SSb effector proteins, including the expected WXG effector EsxA and three LXG-containing proteins. In this work, we characterized an LXG-family toxin named herein TelE promoting the loss of membrane integrity. Seven homologs of TelE harboring a conserved glycine zipper motif at the C terminus were identified in different SGG isolates. Scanning mutagenesis of this motif showed that the glycine residue at position 470 was crucial for TelE membrane destabilization activity. TelE activity was antagonized by a small protein TipE belonging to the DUF5085 family. Overall, we report herein a unique SGG T7SSb effector exhibiting a toxic activity against nonimmune bacteria. IMPORTANCE In this study, 38 clinical isolates of Streptococcus gallolyticus subsp. gallolyticus (SGG) were sequenced and a genetic locus encoding the type VIIb secretion system (T7SSb) was found conserved and absent from 16 genomes of the closely related S. gallolyticus subsp. pasteurianus (SGP). The T7SSb is a bona fide pathogenicity island. Here, we report that the model organism SGG strain UCN34 secretes six T7SSb effectors. One of the six effectors named TelE displayed a strong toxicity when overexpressed in Escherichia coli. Our results indicate that TelE is probably a pore-forming toxin whose activity can be antagonized by a specific immunity protein named TipE. Overall, we report a unique toxin-immunity protein pair and our data expand the range of effectors secreted through T7SSb.


Amino Acid Motifs , Streptococcus gallolyticus subspecies gallolyticus , Type VII Secretion Systems , Streptococcus gallolyticus subspecies gallolyticus/genetics , Glycine
3.
mBio ; 13(5): e0013422, 2022 10 26.
Article En | MEDLINE | ID: mdl-36154281

Type VIIb secretion systems (T7SSb) were recently proposed to mediate different aspects of Firmicutes physiology, including bacterial pathogenicity and competition. However, their architecture and mechanism of action remain largely obscure. Here, we present a detailed analysis of the T7SSb-mediated bacterial competition in Bacillus subtilis, using the effector YxiD as a model for the LXG secreted toxins. By systematically investigating protein-protein interactions, we reveal that the membrane subunit YukC contacts all T7SSb components, including the WXG100 substrate YukE and the LXG effector YxiD. YukC's crystal structure shows unique features, suggesting an intrinsic flexibility that is required for T7SSb antibacterial activity. Overall, our results shed light on the role and molecular organization of the T7SSb and demonstrate the potential of B. subtilis as a model system for extensive structure-function studies of these secretion machineries. IMPORTANCE Type VII secretion systems mediate protein extrusion from Gram-positive bacteria and are classified as T7SSa and T7SSb in Actinobacteria and in Firmicutes, respectively. Despite the genetic divergence of T7SSa and T7SSb, the high degree of structural similarity of their WXG100 substrates suggests similar secretion mechanisms. Recent advances revealed the structures of several T7SSa cytoplasmic membrane complexes, but the molecular mechanism of secretion and the T7SSb architecture remain obscure. Here, we provide hints on the organization of T7SSb in B. subtilis and a high-resolution structure of its central pseudokinase subunit, opening new perspectives for the understanding of the T7SSb secretion mechanism by using B. subtilis as an amenable bacterial model.


Type VII Secretion Systems , Type VII Secretion Systems/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/metabolism
4.
Biochim Biophys Acta Biomembr ; 1861(2): 466-477, 2019 02 01.
Article En | MEDLINE | ID: mdl-30444973

Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.


Cell Membrane/ultrastructure , Membrane Proteins/ultrastructure , Microscopy, Electron , Polymers/chemistry , Streptavidin/chemistry , Animals , Biotinylation , Cattle , Electron Transport Complex III/metabolism , Escherichia coli Proteins/metabolism , Lipoproteins/metabolism , Models, Molecular , Negative Staining
5.
Annu Rev Microbiol ; 72: 231-254, 2018 Sep 08.
Article En | MEDLINE | ID: mdl-30004822

Bacterial secretion systems are responsible for releasing macromolecules to the extracellular milieu or directly into other cells. These membrane complexes are associated with pathogenicity and bacterial fitness. Understanding of these large assemblies has exponentially increased in the last few years thanks to electron microscopy. In fact, a revolution in this field has led to breakthroughs in characterizing the structures of secretion systems and other macromolecular machineries so as to obtain high-resolution images of complexes that could not be crystallized. In this review, we give a brief overview of structural advancements in the understanding of secretion systems, focusing in particular on cryo-electron microscopy, whether tomography or single-particle analysis. We describe how such techniques have contributed to knowledge of the mechanism of macromolecule secretion in bacteria and the impact they will have in the future.


Bacteria/enzymology , Bacterial Secretion Systems/ultrastructure , Cryoelectron Microscopy/methods , Cryoelectron Microscopy/trends
6.
Methods Mol Biol ; 1635: 125-138, 2017.
Article En | MEDLINE | ID: mdl-28755367

Localization of specific subunits or domains of interest inside protein complexes can be challenging, especially for membrane machineries. The amphipatic nature of their subunits and their modular organization results in difficult genetic manipulation and instability upon purification. Here, we present different labeling approaches that have been demonstrated successful in the structural characterization of large membrane complexes.


Staining and Labeling/methods , Type IV Secretion Systems/chemistry , Type VI Secretion Systems/chemistry , Bacterial Proteins/chemistry , Gold , Membrane Proteins/chemistry , Microscopy, Electron
7.
Mol Microbiol ; 105(5): 741-754, 2017 Sep.
Article En | MEDLINE | ID: mdl-28618091

Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA-dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA-ComFC duo at the interface between DNA uptake and DNA recombination during transformation.


Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Transformation, Bacterial/physiology , Adenosine Triphosphatases/genetics , Bacterial Proteins/metabolism , DNA/metabolism , DNA, Single-Stranded/metabolism , Homologous Recombination , Membrane Proteins/metabolism , Protein Binding , Rec A Recombinases/metabolism , Recombination, Genetic , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Transformation, Bacterial/genetics
8.
Biochem J ; 473(14): 2239-48, 2016 07 15.
Article En | MEDLINE | ID: mdl-27208170

Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70-90 Å (1 Å=0.1 nm) from the HasR ß-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Crystallography, X-Ray , Heme/metabolism , Magnetic Resonance Spectroscopy , Microscopy, Electron , Protein Binding , Serratia marcescens/metabolism , Signal Transduction/physiology
9.
Nature ; 516(7530): 250-3, 2014 Dec 11.
Article En | MEDLINE | ID: mdl-25219853

Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded ß-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.


Amyloid/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Lipoproteins/chemistry , Lipoproteins/metabolism , Biofilms , Cell Membrane , Crystallography, X-Ray , Diffusion , Entropy , Membrane Transport Proteins/metabolism , Models, Biological , Models, Molecular , Periplasm/metabolism , Protein Conformation , Protein Transport
10.
Nature ; 508(7497): 550-553, 2014 Apr 24.
Article En | MEDLINE | ID: mdl-24670658

Bacterial type IV secretion systems translocate virulence factors into eukaryotic cells, distribute genetic material between bacteria and have shown potential as a tool for the genetic modification of human cells. Given the complex choreography of the substrate through the secretion apparatus, the molecular mechanism of the type IV secretion system has proved difficult to dissect in the absence of structural data for the entire machinery. Here we use electron microscopy to reconstruct the type IV secretion system encoded by the Escherichia coli R388 conjugative plasmid. We show that eight proteins assemble in an intricate stoichiometric relationship to form an approximately 3 megadalton nanomachine that spans the entire cell envelope. The structure comprises an outer membrane-associated core complex connected by a central stalk to a substantial inner membrane complex that is dominated by a battery of 12 VirB4 ATPase subunits organized as side-by-side hexameric barrels. Our results show a secretion system with markedly different architecture, and consequently mechanism, to other known bacterial secretion systems.


Bacterial Secretion Systems , Escherichia coli/chemistry , Escherichia coli/ultrastructure , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Bacterial Secretion Systems/genetics , Cell Membrane/metabolism , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/ultrastructure , Microscopy, Electron , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure
11.
J Mol Biol ; 426(10): 2059-69, 2014 May 15.
Article En | MEDLINE | ID: mdl-24630999

ABC (ATP-binding cassette) membrane exporters are efflux transporters of a wide diversity of molecule across the membrane at the expense of ATP. A key issue regarding their catalytic cycle is whether or not their nucleotide-binding domains (NBDs) are physically disengaged in the resting state. To settle this controversy, we obtained structural data on BmrA, a bacterial multidrug homodimeric ABC transporter, in a membrane-embedded state. BmrA in the apostate was reconstituted in lipid bilayers forming a mixture of ring-shaped structures of 24 or 39 homodimers. Three-dimensional models of the ring-shaped structures of 24 or 39 homodimers were calculated at 2.3 nm and 2.5 nm resolution from cryo-electron microscopy, respectively. In these structures, BmrA adopts an inward-facing open conformation similar to that found in mouse P-glycoprotein structure with the NBDs separated by 3 nm. Both lipidic leaflets delimiting the transmembrane domains of BmrA were clearly resolved. In planar membrane sheets, the NBDs were even more separated. BmrA in an ATP-bound conformation was determined from two-dimensional crystals grown in the presence of ATP and vanadate. A projection map calculated at 1.6 nm resolution shows an open outward-facing conformation. Overall, the data are consistent with a mechanism of drug transport involving large conformational changes of BmrA and show that a bacterial ABC exporter can adopt at least two open inward conformations in lipid membrane.


ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Cryoelectron Microscopy/methods , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Cell Polarity/physiology , Crystallography, X-Ray , Imaging, Three-Dimensional , Models, Molecular , Protein Conformation , Stereoisomerism
12.
Mol Cell Proteomics ; 10(10): M111.007930, 2011 Oct.
Article En | MEDLINE | ID: mdl-21719796

Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially contributing to the difficulties encountered in IMP crystallization.


Escherichia coli Proteins/biosynthesis , Escherichia coli/growth & development , Membrane Proteins/biosynthesis , Protein Array Analysis/methods , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Genetic Vectors , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Folding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcription, Genetic
13.
J Mol Recognit ; 24(3): 461-6, 2011.
Article En | MEDLINE | ID: mdl-21504024

The lipid-layer technique allows reconstituting transmembrane proteins at a high density in microns size planar membranes and suspended to a lipid monolayer at the air/water interface. In this paper, we transferred these membranes onto two hydrophobic substrates for further structural analysis of reconstituted proteins by Atomic Force Microscopy (AFM). We used a mica sheet covered by a lipid monolayer or a sheet of highly oriented pyrolytic graphite (HOPG) to trap the lipid monolayer at the interface and the suspended membranes. In both cases, we succeeded in the transfer of large membrane patches containing densely packed or 2D-crystallized proteins. As a proof of concept, we transferred and imaged the soluble Shiga toxin bound to its lipid ligand and the ATP-binding cassette (ABC) transporter BmrA reconstituted into a planar bilayer. AFM imaging with a lateral resolution in the nanometer range was achieved. Potential applications of this technique in structural biology and nanobiotechnology are discussed.


Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Microscopy, Atomic Force/methods
14.
Biochemistry ; 47(8): 2404-12, 2008 Feb 26.
Article En | MEDLINE | ID: mdl-18215075

ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.


Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Dimerization , Membrane Transport Proteins/genetics , Models, Biological , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Conformation , Protein Structure, Tertiary , Structure-Activity Relationship , Water/metabolism
15.
Structure ; 15(12): 1674-83, 2007 Dec.
Article En | MEDLINE | ID: mdl-18073116

In Rhodobacter (Rba.) sphaeroides, the subunit PufX is involved in the dimeric organization of the core complex. Here, we report the 3D reconstruction at 12 A by cryoelectron microscopy of the core complex of Rba. veldkampii, a complex of approximately 300 kDa without symmetry. The core complex is monomeric and constituted by a light-harvesting complex 1 (LH1) ring surrounding a uniquely oriented reaction center (RC). The LH1 consists of 15 resolved alpha/beta heterodimers and is interrupted. Within the opening, PufX polypeptide is assigned at a position facing the Q(B) site of the RC. This core complex is different from a dissociated dimer of the core complex of Rba. sphaeroides revealing that PufX in Rba. veldkampii is unable to dimerize. The absence in PufX of Rba. veldkampii of a G(31)XXXG(35) dimerization motif highlights the transmembrane interactions between PufX subunits involved in the dimerization of the core complexes of Rhodobacter species.


Bacterial Proteins/chemistry , Photosynthesis , Rhodobacter sphaeroides/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , Dimerization , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
16.
Biochim Biophys Acta ; 1767(11): 1340-52, 2007 Nov.
Article En | MEDLINE | ID: mdl-17961501

The density distribution of photosynthetic membrane vesicles (chromatophores) from Rhodobacter capsulatus has been studied by isopicnic centrifugation. The average vesicle diameters, examined by electron microscopy, varied between 61 and 72 nm in different density fractions (70 nm in unfractionated chromatophores). The ATP synthase catalytic activities showed maxima displaced toward the higher density fractions relative to bacteriochlorophyll, resulting in higher specific activities in those fractions (about threefold). The amount of ATP synthase, measured by quantitative Western blotting, paralleled the catalytic activities. The average number of ATP synthases per chromatophore, evaluated on the basis of the Western blotting data and of vesicle density analysis, ranged between 8 and 13 (10 in unfractionated chromatophores). Poisson distribution analysis indicated that the probability of chromatophores devoid of ATP synthase was negligible. The effects of ATP synthase inhibition by efrapeptin on the time course of the transmembrane electric potential (evaluated as carotenoid electrochromic response) and on ATP synthesis were studied comparatively. The ATP produced after a flash and the total charge associated with the proton flow coupled to ATP synthesis were more resistant to efrapeptin than the initial value of the phosphorylating currents, indicating that several ATP synthases are fed by protons from the same vesicle.


Bacterial Chromatophores/enzymology , Bacterial Proton-Translocating ATPases/metabolism , Rhodobacter capsulatus/enzymology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Chromatophores/chemistry , Bacterial Chromatophores/ultrastructure , Bacterial Proton-Translocating ATPases/antagonists & inhibitors , Bacterial Proton-Translocating ATPases/chemistry , Blotting, Western , Carotenoids/chemistry , Carotenoids/metabolism , Centrifugation, Density Gradient , Hydrolysis/drug effects , Kinetics , Light , Microscopy, Electron , Peptides/pharmacology , Phosphorylation/drug effects , Rhodobacter capsulatus/chemistry , Rhodobacter capsulatus/ultrastructure , Scattering, Radiation , Spectrophotometry, Ultraviolet , Sucrose/chemistry
17.
Ultramicroscopy ; 107(10-11): 928-33, 2007 Oct.
Article En | MEDLINE | ID: mdl-17544216

Reconstitution of transmembrane proteins by direct incorporation into supported lipid bilayers (SLBs) is a new method to provide suitable samples for high-resolution atomic force microscopy (AFM) analysis of membrane proteins. First experiments have reported successful incorporation of proteins into detergent-destabilized SLBs. Here, we analyzed by AFM the incorporation of membrane proteins in the presence of calcium, a divalent cation functionally important for several membrane proteins. Using lipid-phase-separated membranes, we first show that calcium strongly stabilizes the SLBs decreasing the insertion of low cmc detergents, dodecyl-beta-maltoside, dodecyl-beta-thiomaltoside, and N-hexadecylphosphocholine (Fos-Choline-16) and further insertion of proteins. However, high yield of protein insertion is recovered in the presence of calcium by increasing the detergent concentration in the solution. These data revealed the importance of the calcium in the structure of SLBs and provided new insights into the mechanism of protein insertion into these model membranes.


Calcium/pharmacology , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Microscopy, Atomic Force/methods , Detergents/pharmacology , Membrane Proteins/ultrastructure
18.
Biochemistry ; 45(35): 10512-20, 2006 Sep 05.
Article En | MEDLINE | ID: mdl-16939203

In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.


Bacterial Proteins/chemistry , Cytochrome b Group/chemistry , Light-Harvesting Protein Complexes/chemistry , Rhodobacter/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Chromatography, Gel , Fractionation, Field Flow , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/isolation & purification , Microscopy, Electron , Molecular Sequence Data , Oxidation-Reduction , Rhodobacter/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Biophys J ; 91(9): 3268-75, 2006 Nov 01.
Article En | MEDLINE | ID: mdl-16905620

The heterologous expression and purification of membrane proteins represent major limitations for their functional and structural analysis. Here we describe a new method of incorporation of transmembrane proteins in planar lipid bilayer starting from 1 pmol of solubilized proteins. The principle relies on the direct incorporation of solubilized proteins into a preformed planar lipid bilayer destabilized by dodecyl-beta-maltoside or dodecyl-beta-thiomaltoside, two detergents widely used in membrane biochemistry. Successful incorporations are reported at 20 degrees C and at 4 degrees C with three bacterial photosynthetic multi-subunit membrane proteins. Height measurements by atomic force microscopy (AFM) of the extramembraneous domains protruding from the bilayer demonstrate that proteins are unidirectionally incorporated within the lipid bilayer through their more hydrophobic domains. Proteins are incorporated at high density into the bilayer and on incubation diffuse and segregate into protein close-packing areas. The high protein density allows high-resolution AFM topographs to be recorded and protein subunits organization delineated. This approach provides an alternative experimental platform to the classical methods of two-dimensional crystallization of membrane proteins for the structural analysis by AFM. Furthermore, the versatility and simplicity of the method are important intrinsic properties for the conception of biosensors and nanobiomaterials involving membrane proteins.


Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Microscopy, Atomic Force/methods , Models, Chemical , Models, Molecular , Elasticity , Protein Conformation , Stress, Mechanical
20.
Langmuir ; 22(18): 7907-11, 2006 Aug 29.
Article En | MEDLINE | ID: mdl-16922582

We report the formation of polymer vesicles (or polymersomes) by a new class of amphiphilic block copolymers in which the hydrophobic block is a side-on nematic liquid crystal polymer. Two series of these block copolymers, named PEG-b-PA444 and PEG-b-PMAazo444, with different hydrophilic/hydrophobic ratios were synthesized and characterized in detail. Polymersomes and nanotubes were formed by adding water into a solution of copolymers in dioxane. Polymersomes in water were finally obtained by dialyzing the resulting mixture against water. These self-assemblies have been studied by classical TEM and cryo-TEM. For the PEG-b-PA444 series, polymersomes were observed for hydrophilic/hydrophobic ratios ranging from 40/60 to 19/81. For PEG-b-PMAazo444 series, polymersomes were observed for hydrophilic/hydrophobic ratios ranging from 26/74 to 18/82. For a PEG-b-PA444 sample with hydrophilic/hydrophobic ratio equal to 25/75, a tubular morphology with tube diameter of typically 100 nm and tube length of up to 10 mum was also observed together with polymersomes during addition of water into the polymer solution in dioxane.

...